

(Giang vien - FUG HCM) Trần Trọng Huỳnh

Dashboard » Mathematics » Mathematics for Engineering - MAE101 » MAE101-HuynhTT » Chapter 1 - Systems of Linear Equations » Q5 » Preview

Started on	Wednesday, 25 October 2017, 12:38 PM
State	Finished
Completed on	Wednesday, 25 October 2017, 4:00 PM
Time taken	3 hours 21 mins
Overdue	2 hours 6 mins
Marks	2.00/50.00
Grade	0.40 out of 10.00 (4 %)

Question 1 Not answered Marked out of 1.00	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(u) = (1, 2), T(v) = (-1, 0)$ for given $u, v \in \mathbb{R}^2$. Find $T(2u - 3v)$						
	A. (-2,8)	B. (-2,4)	C. (1,0)	D. (5,4)			
	Select one: a. A b. D c. B d. C						

Question 2	Find the dimension of U = span{(1, 2, -1); (3, 1, 1); (-1, 2, 0); (0, 1, 1)}
Marked out of 1.00	Select one: a. 0
	 b. 3 c. 2
	 d. 4 e. 1

Question 3 Not answered Marked out of 1.00	If A is a 2 × 2 invertible matrix and $(3A)^{-1} = \begin{bmatrix} -1 & -3 \\ 4 & 5 \end{bmatrix}$, what is the (1, 1)-entry of A?
	Select one: a5/21 b25/3 c. 5/21
	 d. 5/3 e. 15/7

Question **4** Not answered

Marked out of 1.00

Let A be a 3x5 matrix. Choose correct statements

- (i) A can have rank 3
 - (ii) A can have rank 5
 - (iii) A can have linearly independent rows
 - (iv) A can have linearly independent columns

A. (i) only	B. (i) and (iii) only
C. (ii) and (iv) only	D. (iv) only

- 🔵 a. A
-) b. C
- 🔵 c. B
- 🔵 d. D

Question 5 Not answered Marked out of 1.00	Find the first row	of adjugate of the m	atrix $\begin{pmatrix} 0 & 2 & -4 \\ 2 & 3 & -1 \\ 1 & 4 & 1 \end{pmatrix}$	
	A. [7, 18, 10]	B. [7, -18, 10]	C. [7, -3, 5]	D. [7/26, 9/13, -5/13]
	Select one: a. C b. B c. D d. A			

Question 6 Complete	Which one of the following is a basis for the subspace of \mathbb{R}^3 defined by $G = \{(x, y, z) : 2x - y + 3z = 0\}$?
Mark 1.00 out of	
1.00	Select one:
	a. {(1, 0, 0), (1, 2, 0)}
	b. {(1; 2; 0)}
	c. {(1, 0, 0); (0, 1, 0); (0, 0, 1)}
	 d. None of the others
	e. {(1; 2; 0); (0; 3; 1)}

Question 7
Not answered
Marked out of 1.00Which condition on the numbers a, b, c is the vector $(a, b, c) \in span\{(1, 0, 2), (1, 2, 8)\}$ A. c = 2a + 3bB. c = -2a - 3bC. c = 2a - 3bD. c = -2a + 3bSelect one:a. Bb. Dc. Cd. A

Question 8	
Not answered	Let $A = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 2 & 0 \end{bmatrix}$. What is the $(1, 2)$ -entry of the matrix $AB - B$
Marked out of 1.00	
	BA?
	Select one:
	a4
	b. None of the others
	• c. 2
	○ d2
	e. 1

Question **9** Not answered

Marked out of 1.00

Find the value(s) of t for which (1,3,-2,2t) lies in the subspace spanned by (1,1,2,2), (1,3,2,2), and (1,4,3,3).
Select one:

a. 1
b. 2
c. 1 or -1
d. -2
e. -1

Question 10 Not answered	Find m such that the set $\{(2, m, 1), (m, 0, 0), (1, 1, m)\}$ is a basis of \mathbb{R}^3						
Marked out of 1.00	A. $m \neq 0$	B. $m \neq \pm 1$	C. $m \neq 1$	D. $m \in \mathbb{R} \setminus \{0, 1, -1\}$			
	Select one:						
	🔘 a. D						
	🔘 b. B						
	🔍 c. A						
	🔍 d. C						

Question **11** Not answered

Let $U = \text{span}\{(1, -2, 3, 4), (-3, 6, -5, -16), (-1, 2, -5, -2)\}$. Find all t such that $(1, t, 3, 4) \in U$.

Marked out of 1.00

Select one:
a. t =1
b. t = 0
c. None of the others
d. t = -1
e. t = -2

Question 12

Not answered

Marked out of 1.00

Find all values of m such that the folowing system has no solution

$$\begin{cases} x - 2y + z = 0\\ x + y + 3z = 1\\ 2x - y + 4z = m \end{cases}$$

Select one:

🔵 a. m = 1

o b. Any number

o c. m ≠ 1

od. m = 0

Question 13	Let A be the augmented matrix of a homogeneous of 3 equations in 6 variables. If
Not answered	rank(A) = 1, how many solutions and how many parameters does this system have
Marked out of 1.00	A. Infinitely many solutions and 3 parameters
	B. Infinitely many solutions and 2 parameters
	C. Infinitely many solutions and 5 parameters
	D. Unique solution

have?

Select one:

🔵 a. B

🔵 b. D 🔵 c. A

🔵 d. C

Question 14 Not answered Marked out of 1.00	Which of the following statements are true for invertible $n \times n$ matrices A, B , and C ? (i) $(A+B)^{-1} = A^{-1} + B^{-1}$ (ii) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ (iii) $A^2B^2 = (AB)^2$ (iv) $(A+B)^2 = A^2 + 2AB + B^2$ (v) $(A+C)(A-C) = A^2 - C^2$
	Select one:
	 b. (i) and (ii) only
	c. (i) and (iv) only
	 d. None of the others
	e. (ii) and (iii) only

Question 15

Not answered

Marked out of 1.00

Determine whether the statement is true

- a. Elementary row operations permit one row of an augmented matrix to be subtracted from another.
- b. A homogeneous linear system in n unknowns whose corresponding augmented matrix has a reduced row echelon form with r leading 1's has r free variables.
- c. If the number of equations in a linear system exceeds the number of unknowns, then the system must be inconsistent.
- d. A single linear equation with two or more unknowns must have infinitely many solutions

Question 16
Not answeredLet A_{3x5} be the augment matrix of a homogeneous system of linear equation. If rank(A) = 1,
how many solutions and parameters does this system have?Marked out of 1.00Select one:a. No solutionb. infinitely many solutions and 4 parameterc. Unique solutiond. infinitely many solutions and 1 parametere. infinitely many solutions and 3 parameterc. Unique solutiond. infinitely many solutions and 3 parametere. infinitely many solutions and 3 parameterCuestion 17
Not answered
Marked out of 1.00Let $B = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Then the second row of B^{-1} is

Select one:

a. [0 -1 1]

• b. [0 1 -1]

o c. [-1 1 0]

● d. [1 0 -1]

e. None of the others

Consider the matrix

Not answered

Marked out of 1.00

 $A = \begin{pmatrix} 2 & -1 & 1 \\ -4 & 2 & 2 \\ 4 & 2 & 3 \end{pmatrix}$

If A is the augmented matrix of a system of linear equations, determine the number of equations and the number of variables.

- a. 3 equations, 3 unknows
- b. 2 equations, 3 unknows
- c. 2 equations, 2 unknows
- d. 3 equations, 2 unknows

Question 20 Not answered Marked out of 1.00	If	$egin{array}{c} a \\ d \\ g \end{array}$	b e h	c f	= 7, find	3a - 5g $3b - 5h$ $3c - 5i$	g h i	$egin{array}{c} d \\ e \\ f \end{array}$	
	Select a. b. c. d. e. f.	one: 35 -35 -7 21 7 21							

Question 21 Not answered Marked out of 1.00	Find all values solution	m such that the syste	m of equations $\begin{cases} x+y\\ x+2\\ 2x+z \end{cases}$	y - z = 1 2y + mz = 0 has exact 3y - 2z = m	tly one
	A. $m \neq 1$	B. <i>m</i> ≠ 2	C. $m \neq -1$	D. $m = -1$	
	Select one: a. D b. B c. C d. A				

Question 22 Not answered Marked out of 1.00	The (2,3)-entry of the product $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 4 & -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 2 \\ 5 & 1 & 0 \\ 0 & 4 & 3 \end{bmatrix}$ is:
	Select one:
	a. 8
	b. 10
	○ c. 11
	o d. 7
	• e. 9

Question 23 Not answered	If ABC can be formed and A is 4x4, C is 7x7. What is the size of B?			
Marked out of 1.00	A. 4x7	B. 4x4	C. 7x4	D. 7x7
	Select one:			
	🔵 a. C			
	b. B			
	c. A			
	🔘 d. D			

Question 26 Not answered Marked out of 1.00	Find all solutions of the following s	ystem of linear equations $\begin{cases} x - y - z = 3 \\ -x - y + z = -1 \end{cases}$
	A. $x = 3, y = -1, z = 1$	B. $x = 1, y = -1, z = -1$
	C. $x = t - 2, y = -1, z = t$	D. $x = t, y = -1, z = t - 2$
	Select one: a. D	
	b. C	
	○ c. B	
	🔘 d. A	

Question 27 Complete Mark 0.00 out of	The characteristic polynomial of $A = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2\\ 0 \end{pmatrix}$ is
1.00	A. $(x-2)(x+1)$	B. $x^2 - 3x + 2$
	C. $(x+2)(x+1)$	D. x^2
	Select one: a. B b. C	
	 c. D d. A 	

Question	29

Not answered

Marked out of 1.00

🔵 d. B

Let
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$. Solve $AXB = BA$, where X is a matrix
A. $X = I$
B. $X = \begin{pmatrix} 59 & 32 \\ -24 & -13 \end{pmatrix}$
C. $X = \begin{pmatrix} 27 & -16 \\ -32 & 19 \end{pmatrix}$
D. None of the others
Select one:
a. C
b. D
c. A

Question 31 Not answered Marked out of 1.00	Find the (1,2) - cofactor of the matr	$\operatorname{rix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & -1 & 5 \\ 0 & 7 & 6 \end{pmatrix}$	
	A. 24	B24	C.9	$\mathbf{D}.\begin{pmatrix} 4 & 5\\ 0 & 6 \end{pmatrix}$
	Select one: a. D b. C			
	c. Bd. A			

Question 32 Not answered Marked out of 1.00	Let $A = \begin{pmatrix} 1 & * \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	* * * * 5 * 0 7) denotes any real nur	mber. Compute $det(2A^{-1})$
	A. $\frac{2}{105}$	B.210	C. $\frac{16}{105}$	D. None of the others
	Select one: a. B b. C c. D d. A			

Question 33	Let V=span{(1,2,3,4),(3,2,5,1),(2,1,0,1)}. Find all t such that (1,2,t,3)∈V.
Not answered	
Marked out of 1.00	Select one:
	o a. 9
	b. 1
	○ c3
	o d. 27/5
	○ e. 5

Question 35 Not answered Marked out of 1.00	Find all values of m s	such that the following system has $\begin{cases} x + y - z = 2 \\ 3x - y + 2z = 3 \\ 2x - 2y + 3z = m \end{cases}$	no solution	
	A. Any number	B. All numbers but 1	C.1	D . 7
	Select one: a. B b. A c. C d. D			

Question 36 Not answered	A is a 4×4 matrix with det A = 3. If $adj(A)$ denotes the transpose of the matrix of cofactors of A, find det($adj(A)$).
Marked out of 1.00	Select one:
	🔘 a. 3
	b. 27
	○ c. 9
	🔘 d. 81

Question 37 Complete	A is a 4x4 matrix with det A = 4. If $adj(A)$ denotes the transpose of the matrix of cofactors of A, find det($adj(A)$).
Mark 1.00 out of 1.00	Select one: a. 16 b. 1/16 c. 4 d. 1/64 e. 64

Question 38 Not answered Marked out of 1.00	Find all values of m for which the folowing system of equations has nontrivial solutions: x - 2y + z = 0 x + my - 3z = 0 -x + 6y - 5z = 0
	Select one: a. $m = 2$ b. $m = -2$ c. $m \neq -2$ d. $m \neq 2$ e. No such m

Question 39

Not answered

Marked out of 1.00

Every linear system can be written as a matrix equation AX = B where:

a. A is a square matrix.

- b. A and B are equal
- o c. B is the augmented matrix
- od. None of the others
- e. A is the augmented matrix.

Question 41
Not answered
Marked out of 1.00Find the system of linear equations whose augmented matrix is given as $\begin{bmatrix} 1 & -2 & 0 & 6 \\ -3 & 1 & 5 & 2 \\ 0 & 1 & 3 & 4 \end{bmatrix}$ A. $\begin{cases} x-2y=6 \\ 3x-y-5z=-2 \\ y+3z=-4 \end{cases}$ B. $\begin{cases} x-2y=6 \\ 3x-y-5z=2 \\ y+3z=4 \end{cases}$ C. $\begin{cases} x-2y=6 \\ 3x-y-5z=-2 \\ y+3z=4 \end{cases}$ D. $\begin{cases} x-2y+6t=0 \\ -3x+y+5z+2t=0 \\ y+3z+4t=0 \end{cases}$

Select one:

🔵 a. B

- 🔵 b. D
- 🔵 c. A
- 🔵 d. C

Question 42	Let A and B be $n \times n$ matrices, and k be a scalar. Which two of the following statements		
Not answered	are <u>false</u> ?		
Marked out of 1.00	(i) $\det(AB) = \det A \det B$		
	(ii) $\det A + \det B = \det(A + B)$		
	(iii) $\det(kA) = k \det A$		
	(iv) $\det(kA) = k^n \det A$		
	$(\mathbf{v}) \det(A^T) = \det A$		
	Select one:		
	a. (i) and (ii) only		
	b. (i) and (iv) only		
	c. (ii) and (iii) only		
	d. (iii) and (iv) and (v)		
	e. (ii) and (v) only		

Question 43 Not answered	What is the dimension of the subspace spanned by $\mathbf{w} = (1, -1, 4, -5), \mathbf{x} = (2, 1, 5, -1), \mathbf{y} = (0, 1, -1, 3)$ and $\mathbf{z} = (3, 4, 5, 6)$?
	Select one:
	a. 3
	b. 0
	○ c. 2
	o d. 1
	• e. 4

Solve the folowing system of equations

Marked out of 1.00

x + 10z = 5 3x + y - 4z = -1 4x + y + 6z = 1Select one: a. x = 5; y = -16; z = 0 ● b. x = 5 + 27; y = -16 - t; z = t o c. None of the others d. No solution

Question 45 Complete Mark 0.00 out of	Let $U = \{(a, b, c, d) 3a - 5b = 0, b + c + d = 0\}$ be a subspace of R ⁴ . Find the dimension of U			
1.00	A. 1	B. 2	C. 3	D. 4
	Select one: a. D b. A c. B d. C			

Question **46** Not answered

Marked out of 1.00

Find all values of k for which the given augmented matrix corresponds to a consistent linear system.

[1	k	-4
4	8	2

Select one:

a. k ≠ 2
b. k = 2

c. k ≠ 0

od. k ≠ -2

e. Any number

Question 47
Not answeredIf B is a 3×3 matrix and det B = 5, then det $(2B^{-1})$ is:Marked out of 1.00Select one:a. 2/5b. 5/8c. 1/40c. 1/40d. 8/5e. 1/10

Not answered

Marked out of 1.00

Let U statem	$= \{(x, y, z) \mid 2$ ents are true?	$x - y + z = 0$ } be a subspace	e of R^3 . Which of the	e following	
(i)	$U = span\{(1,0,-2),(0,1,1)\}$				
(ii)	(ii) $U = span\{(1, 2, 0)\}$				
A. (i)	only	B. Both (i) and (ii)	C. (ii) only	D. None	
Select on	0.				
	σ.				
• b. A					
🔵 c. B					
🔵 d. C					

Dream of Innovation.

Quick Links

About Us

Terms of use

FAQ

Support

Follow Us

f

Contact

Innovation Building, QTSC, D.12, HCMc Phone: (848) 543 711 97